الجواب 1 :
جهد خرج المنظم 7812 هو 12 فولت ، يجب ان يكون ادنى جهد داخل للمنظم هو جهد الخرج + 2 فولت
اي الجواب هو 14 فولت

(2) حدد (لو سمحت) العناصر الإلكترونية التي تكون البور سبلاي الغير منتظم؟

الاجابة:
المحول (X) والقنطرة المكونة من الأربعة ديودات توحيد (D1 – D4) والمكثف الكيميائي (C1) الذي قيمته 470u/35V .
هذه هي المكونات الأساسية لأي بور سبلاي غير منتظم. إذا تم وضع زينر أو منظم جهد من السلسلة 78xx أو ما شابه بعد المكثف يكون هذا البور سبلاي منتظم.
ملاحظة: المكثف الكيميائي يُرمز له عادة بخطين متوازيين يكون أحدهما مقوس للدلالة على انه الطرف السالب للمكثف. وهذا يُميّز المكثف الكيميائي ذو القطبية عن غيره من الأنواع الأخرى عديمة القطبية كمكثف السيراميك. إذا وصلت المكثف الكيميائي بقطبية معكوسة سينفجر على الأغلب، لذا انتبه لأطرافه قبل توصيله.

(3) افرض جدلاً أنني أريد أن يكون جهد البوسبلاي الناتج هو 14 فولت DC غير منتظم، فكم تكون قيمة الجهد الثانوي AC للمحول x؟
الاجابة:

الحل: جهد الملف الثانوي للمحول Vsec هو = جهد الـ DC مقسوما على الجذر التربيعي للـ 2 والناتج نضيف إليه 1,4 فولت والجواب هنا = 11.3 Vrms (AC) تقريباً.
لمزيد من الاطلاع: ارجع إلى موضوع اكتشف أسرار……. #0001
لن تجد في السوق محول جهد ملفه الثانوي = 11,3 فولت. عمليا أنت ستبحث عن اقرب قيمة مثل 12 فولت متردد.



(4) إذا كان جهد الملف الثانوي للمحول x هو 12 فولت AC فكم تكون قيمة الجهد DC الغير منتظم عند الطرف الموجب للمكثف (الفلتر) C1 ؟
الاجابة:
من محول جهده الثانوي 12 فولت ستحصل على جهد موحد DC قيمته = 15,5 فولت DC تقريباً.
لمشاهدة الحسابات ارجع إلى موضوع اكتشف أسرار……. #0001

(5) علل وجود المكثفين 100 نانوفاراد دائما حول أي منظم جهد من السلسة 78xx؟

الاجابة:
لو تصفحنا الداتاشيت لاي منظم جهد ستجد على الأغلب ما يشبه الشكل التالي:

المكثف الأول C2 وقيمته 100 نانو والموجود عند المدخل وظيفته منع المنظم من التذبذب خصوصا عندما يكون بعيداً (على أي مسافة) عن المكثف C1 التابع للمصدر، أسلاك التوصيل بينهما ستكافئ ملف له حث وبالتالي تكون معاوقة الدخل للمنظم عالية. يقوم المكثف C2 بمعادلة ذلك ومنع التذبذب.
المكثف C3 وقيمته أيضا 100 نانو والموجود عند مخرج المنظم له نفس الوظيفة وهي منع التذبذب عند حدوث أي تغيير في تيار الحمل أو جهد المصدر.
هذان المكثفان ضروريان لاستقرار عمل منظم الجهد، وعليك أن تضعهما دائما قبل وبعد المنظم حتى وان لم يوجدا في مخطط الدائرة الأصلي.
أنا شخصيا امتلك اكثر من 200 مكثف 100 نانو حصلت عليهم من لوحات إلكترونية تالفة. أنت أيضا لن تجد صعوبة في الحصول على هذا المكثف السيراميكي الشهير جدا والذي لا تكاد تخلو منه لوحة إلكترونية.

(6) ما الحكمة من تغذية مداخل مكبري العمليات N1 و N2 من خرج البور سبلاي مباشرةً وليس من خرج المنظم 7812؟
الاجابة
الحكمة واضحة وهي أنني عندما اخذ من خرج المنظم 7812 ستكون قيمة الجهد ثابتة تقريباً في جميع الأحوال سواء كانت كهرباء الحائط 220 أو 240 أو اقل أو اكثر. ولن يتأثر خرج المُقارن بالتغيرات الحادثة في قيمة جهد كهرباء الحائط. يعني لن يرى المُقارن أي تغيير يُذكر بل سيبقى جهد مداخله ثابتا وبذلك تكون الدائرة الكهربية قد فقدت الغاية من وجودها أصلاً.

(7) افرض أن الجهد عند الطرف الموجب للمكثف C1 هو 15 فولت DC، احسب قيمة المقاومة VR1 بعد ضبطها ليكون جهد المدخل الغير عاكس (الطرف3) يساوي 6,5 فولت (الطرف A في الشكل التالي)؟
السؤال بصيغة أخرى: احسب قيمة المقاومة المتغيرة VR1 ليصبح الجهد عند النقطة A أي VA = 6,5 فولت، إذا علمت أن جهد المصدر = 15 فولت؟


الاجابة:
الهدف من السؤال هو:
أولاً: أن تكون لديك القدرة على معرفة القيمة (ولو بالتقريب) التي يجب ضبط المقاومة المتغيرة عندها لتحصل على قيمة جهد معينة من مقسم الجهد Voltage divider
ثانياً: أن تعرف مدي قيمة المقاومة المتغيرة التي تلزمك في تصاميم معينة للحصول على قيم جهد محددة. يعني هل أنا عايز مقاومة متغيرة 10 كيلو أم 100 كيلو وهكذا.

يجب أن تلاحظ أن النقطة A في الشكل والتي تمثل اتصال الطرف (3) لمكبر العمليات مع نقطة اتصال R1 و VR1 هي نقطة ينقسم عندها الجهد 15 إلى جزأين حسب نسب المقاومات.
الآن لدينا فريقان من المقاومات، الفريق العلوي للنقطة A ويتمثل في المقاومة R1 = 33K والفريق السفلي للنقطة A ويمثل المقاومتين المتغيرة VR1 + الثابتة R2 والمُشار له بالرمز R على الرسم أعلاه.
لاحظ أن الجهد على المدخل 3 لمكبر العمليات N1 = الجهد على المقاومات اسفل النقطة A أي الجهد على المجموعة R.
قيمة المقاومة R متغيرة تتراوح ما بين (10 كيلو + صفر) إلى (10 كيلو + 47 كيلو) أي من 10 كيلو إلى 57 كيلو. إذن قيمة المقاومة R تتراوح من 10 كيلو إلى 57 كيلو. الآن تعالوا نحسب R كما يلي:
إذن R = 25 كيلو، من ذلك نجد أن قيمة المقاومة المتغيرة يجب أن تكون مضبوطة عند 15 كيلو (25 –10 = 15) ليكون الجهد عند النقطة ايه = 6,5 فولت.


(8) إذا كان المحول هو 220 إلى 12 فولت AC، احسب قيمة الجهد الناتج عند الطرف الموجب للمكثف C1 في الحالات التالية:
 إذا كان جهد كهرباء الحائط 240 فولت AC
 إذا كان جهد كهرباء الحائط 180 فولت AC
 إذا كان جهد كهرباء الحائط 245 فولت AC
 إذا كان جهد كهرباء الحائط 175 فولت AC

الاجابة:
الجزء الأول:

الجزء الثاني:

الجزء الثالث:

الجزء الرابع:

وهذا ملخص للعمليات السابقة:

من ذلك نشاهد انه على سبيل المثال إذا تغيرت قيمة جهد كهرباء الحائط من 240 فولت إلى 245 فولت فان الجهد DC عند الطرف الموجب للمكثف الكيميائي C1 ستتغير في المقابل من 17 إلى 17,5 فولت، أي بمقدار نصف فولت أي بمقدار 500 ميللي فولت، وهذه قيمة كبيرة بالنسبة للمُقارنات شديدة الحساسية حيث تعتمد في ذلك على مقدار كسب الجهد لها والذي يكون كبير جدا بشكل عام لمعظم مكبرات العمليات (سنأتي على ذلك بقليل من التفصيل).
ولمعرفة اقل فرق في الجهد بين المدخلين لمكبر العمليات والذي تتم عنده عملية التحول من Low إلى High أي ليحدث التحول Switching نقول بشكل عام اننا نعلم ان كسب الجهد Voltage gain لمكبر العمليات يكون كبيرا جدا بحدود 200000 وان اقل قيمة ممكنه هي 50000 وبالتالي يكون اقل فرق ممكن يتراوح ما بين (12 ÷ 200000) الى (12 ÷ 50000) أي من 6 مايكرو فولت الى 240 مايكرو فولت. الارقام اعلاه تدخل فيها عوامل كثيرة لكن ما اود قوله هنا ان اقل فرق بين المخلين يصل الى 0,3 ميللي فولت يؤدي الى حدوث التحول في الخرج.
اقل فرق في الجهد = جهد المصدر DC المُغذي ÷ كسب الجهد
بالنظر للجدول اعلاه، على سبيل المثال الى الصفين الاخيرين، نلاحظ انه عندما تتغير كهرباء الحائط من 180 الى 175 يكون الفرق في الجهد DC الناتج = 0,4 فولت أي 400 ميللي فولت، ما نحتاجه من هذه الأربعمئة هو اقل ما 1 ميللي فولت. اعتقد ان الصورة وصلت.

(9) اختر الإجابة الصحيحة:
 لكي يكون خرج N1 هو High يجب أن يكون جهد الطرف 3 …. (اكبر من 6,8 فولت// = 6,8 فولت// اقل من 6,8 فولت).
 لكي يكون خرج N2 هو High يجب أن يكون جهد الطرف 6 …. (اكبر من 6 فولت// = 6فولت// اقل من 6فولت).
الاجابة:

لكي يكون خرج N1 هو High يجب أن يكون جهد الطرف 3 اكبر من 6,8 فولت
لكي يكون خرج N2 هو High يجب أن يكون جهد الطرف 6 اقل من 6فولت.

(10) الليد (Red LED) الوحيد الموجود في المخطط به خطأ ما، علّق على ذلك.
الاجابة:

أولا أي LED يحتاج إلى مقاومة تحد من شدة التيار المار فيه لحمايته. توصيل LED مباشرة بالمصدر 12 فولت دون مقاومة حماية سيؤدي إلى تلفه فوراً.
لو سمحت انظر للشكل مخطط الدائرة، تلاحظ ان هذا الـ LED المتصل بجوار D6 بجوار
الريلي غير محمي بمقاومة تحديد شدة التيار. بمجرد أن يكون خرج مكبر العمليات N1 أو N2 في حالة high سيصبح T1 شغال أي ON وسيمر تيار رأساً من منظم الجهد 12 فولت
إلى الـ LED إلى T1 إلى سالب البطارية. لاحظ أن الجهد المطبق على الـ LEDسيكون 11,8 فولت، لان فرق الجهد VCE عند تشبع T1 (أي عندما يكون Fully ON) = 0,2 فولت. إذن هناك 11,8 فولت مطبقة مباشرة على الـ LED دون وجود مقاومة حماية لذا سيضيء إضاءة شديدة لعدة ثواني ثم يحترق. المشكلة انه لن يحترق لوحده بل سيحرق أيضا الترانزيستور T1 معه، لماذا؟ سأتحدث عن ذلك بعد أن أعطى نبذة عن الـ LED:
بشكل عام، عندما يضيء الـ LED (الأحمر اللون) يكون فرق الجهد بين طرفيه 1,8 فولت (هذه قاعدة احفظها غيباً). التيار الذي يجب أن نسمح له بالمرور في الـLED يجب أن لا يتجاوز من 25 إلى 30 ميللي أمبير. كلما زادت شدة التيار ازدادت إضاءة الـ LED، لكن
إذا تجاوزنا القيمة 30 ميللي أمبير يصبح الـ LED في خطر. قيم المقاومات المشهور استخدامها لتحديد قيمة تيار الـ LED هي 330 أوم و470 أوم حتى 1 كيلوأوم. هناك حسابات تُجرى لمعرفة القيمة الدقيقة والمناسبة لظروف دائرة معينة، لكن إذا كنت لا تحب الحسابات (مع أنها سهلة جداً) ابدأ بقيمة كبرى (1كيلوأوم مثلاً) وتأمل إضاءة الـ LED، إن كانت مناسبة فبها وإلا قم بتخفيضها إلى 470 أوم أو إلى 330 أو حتى إلى 220 أوم طالما
أنت تلاحظ أن الإضاءة ليست بها دلالات على اقتراب اجله وانتقاله إلى رحمة الله.
بالنسبة للحسابات تتم كما يلي: (سأتحدث هنا عن دائرتنا بالذات)
نحن سنتبع مسار يبدأ من موجب مصدر التغذية 12 فولت مرورا بمقاومة الحماية (المفترض وجودها) ثم بالـ LED إلى T1 مُنتهين عند سالب مصدر التغذية.
اتفقنا أن فرق الجهد بين طرفي الـ LED عندما يكون مضيء = 1,8 فولت، واتفقنا سابقاً أن فرق الجهد VCE على T1 عندما يكون متشبعاً (Fully ON) = 0,2 فولت، وبفرض أن قيمة مقاومة الحماية 330 أوم، هذا يؤدي إلى:
12 - I * 330 - 1.8 - 0.2 =0
I = (12-2)/330 = 10/330 = 30 mA
حيث "I " هي قيمة شدة التيار المار في الـ LED. القيمة 30 ميللي أمبير الناتجة أعلاه هي قيمة مقبولة وهي تؤدي إلى إضاءة قوية للـ LED وهو لا يزال بأمان.
إذا كانت هذه الإضاءة قوية اكثر من اللازم وتحب إن تضعفها استخدم مقاومة اكبر مثل 470 أوم. تعال نحسب التيار في هذه الحالة:
12 - I * 470 - 1.8 -0.2 =0 الرقم 12 وناقص في البداية من اليسار مشكلة في العرض
I = (12-2)/470 = 10/470 = 21 mA
إذا أردت إضاءة اقل (خافتة نوعاً) جرّب القيمة 1 كيلو أوم:
12 - I * 1000 - 1.8 -0.2 =0
I = (12-2)/1000 = 10/1000 = 10 mA
وهكذا.
أيضا لاحظ انه تم توصيل هذا الليد بالشكل المبين بجوار الريلي وسالبه متصل مع الترانزيستور لكي يضيء عند انقطاع التغذية عن الثلاجة أي عندما يكون الجهاز الكهربي المتصل متوقف لحمايته. بمعنى انك اذا نظرت الى جهاز الحماية فوجدت الليد طافي هذا يعني ان الكهرباء في النطاق المقبول والجهاز شغال، واذا كان الليد مضيئاً فهذا يعني ان كهرباء الحائط تجاوزت القيم المقبولة (180 الى 240 فولت) وقد تم قطعها عن الجهاز (الثلاجة) لحمايتها.



(11) اختيار الدارة المتكاملة LM324 كان اختيار غير موفق (من ناحية كفاءة التصميم) ما تعليقك على ذلك، أرجو أن تقترح الدارة المتكاملة البديلة والتي تعتبر اكثر ملائمة.
الاجابة

الدارة المتكاملة LM324 تحتوي على أربع op-amps في حين تستخدم الدائرة عدد 2 فقط op-amps وبالتالي يبقى لدينا اثنان دون فائدة. الدارة المتكاملة LM358 تحتوى على عدد 2 op-amps فقط وهي تكافئ الدارة المتكاملة LM324 تماما من حيث الخصائص.
باستخدام LM358 بدلاً LM324 تكون قد وفرت في السعر وفي الحجم (انظر الشكل التالي)